Biomedical Laboratory Science

ShareThis

Showing posts with label Gene regulation. Show all posts
Showing posts with label Gene regulation. Show all posts

Wednesday, December 6, 2017

Transcriptional Regulation by Mediator Complex


Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression.

In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation.




Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly.

Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.


Key points

  • Recent structural advances based on improvements in electron microscopy methodology have enabled the generation of high-resolution structural models of the mediator of RNA polymerase II transcription (Mediator) complex and of the preinitiation complex (PIC) in the presence of Mediator.
  • The module composition of Mediator changes between its recruitment to upstream regulatory regions (enhancers or upstream activating sequences where Mediator is bound to transcription factors) and its action on core promoters together with PIC components.
  • The functional interplay between Mediator and general transcription factors in PIC assembly is closely related to chromatin architecture at promoter regions.
  • Direct contact between Mediator and the nuclear pore-associated transcription-coupled export (TREX2) complex suggests that Mediator functions in gene positioning in the nuclear space.
  • Mediator has been shown to function in the establishment of transcriptional memory, which also involves Mediator interactions with the nuclear pore.
  • Potential therapeutic targeting and modulation of Mediator activity in cancers and in fungal infectious diseases emphasizes the importance of studies of Mediator mechanisms for improving human health.




Wednesday, November 23, 2016

MicroRNA: A Tiny Molecule Yields Big Insights Into Disease States

Regular readers of this column will know that there are two main categories of nucleic acids—DNA and RNA. They’ll also know that while for living organisms DNA acts as the genetic data repository, RNA has a messenger role (mRNAs, transcribed from DNA to direct protein synthesis). Most will also recall that there are other classes of RNA molecules, particularly tRNAs (used to tag and identify amino acids for protein synthesis) and rRNAs (structural components of the ribosome, the cellular “machinery” for protein synthesis). In addition to these, there’s increasing interest in the molecular diagnostics community in a less widely known but no less common RNA form, the microRNA or miRNA.



Tuesday, August 30, 2016

Vitamin D and Autism: The Missing Link

Causes, Prevention, and Treatment
I first became interested in vitamin D when I learned that it is not a vitamin. Instead, it is the only known substrate of a seco-steroid neuro-hormone that functions, like all steroids, by turning genes on and off.

That means it has as many different mechanisms of action as the genes it regulates. Moreover, vitamin D directly regulates hundreds, if not thousands, of the 21,000 coding genes of the human genome. Genes are responsible for making the proteins and enzymes the human body relies on for normal development and function.

Evidence that vitamin D is involved in the autism epidemic is mounting.



Related Posts Plugin for WordPress, Blogger...

AddToAny