Biomedical Laboratory Science

ShareThis

Showing posts with label Neuroscience. Show all posts
Showing posts with label Neuroscience. Show all posts

Monday, May 16, 2016

Plasma Levels Investigated as Alzheimer's Disease Biomarkers

The relationship between plasma levels of two amyloid beta peptides (Aβ1-40 and Aβ1-42), brain volumetrics and cognitive performance has been investigated.

Since amyloid beta (Aβ) peptides are the main component of the amyloid plaques found in Alzheimer patients' brains, changes in levels of Aβ in blood plasma may provide a biomarker for detecting increased risk or early diagnosis of disease.

Scientists at the University of New South Wales (Sydney, Australia) examined 126 age-matched cognitively normal controls, 89 individuals with amnestic mild cognitive impairment (aMCI,) from the Center for Healthy Brain Aging (CHeBA) Sydney Memory & Aging Study (Sydney MAS), as well as 39 individuals with Alzheimer's disease (AD) recruited from a specialty clinic.

Thursday, May 5, 2016

The mechanisms and functions of spontaneous neurotransmitter release

Fast synaptic communication in the brain requires synchronous vesicle fusion that is evoked by action potential-induced Ca2+ influx. However, synaptic terminals also release neurotransmitters by spontaneous vesicle fusion, which is independent of presynaptic action potentials. A functional role for spontaneous neurotransmitter release events in the regulation of synaptic plasticity and homeostasis, as well as the regulation of certain behaviours, has been reported. In addition, there is evidence that the presynaptic mechanisms underlying spontaneous release of neurotransmitters and their postsynaptic targets are segregated from those of evoked neurotransmission. These findings challenge current assumptions about neuronal signalling and neurotransmission, as they indicate that spontaneous neurotransmission has an autonomous role in interneuronal communication that is distinct from that of evoked release.

Key points
  • Synaptic terminals can release neurotransmitter by spontaneous vesicle fusion that is independent of presynaptic action potentials.
  • The traditional view of spontaneous neurotransmitter release suggests that spontaneous events occur randomly in the absence of stimuli owing to low-probability conformational changes in the vesicle fusion machinery.
  • Recent studies have identified key distinctions between the synaptic vesicle fusion machineries that perform spontaneous versus evoked neurotransmitter release.
  • In mammalian hippocampal synapses and at the Drosophila melanogaster neuromuscular junction, spontaneous and evoked neurotransmitter release events show some spatial segregation and activate distinct populations of postsynaptic receptors.
  • Segregation of spontaneous neurotransmission enables selective neuromodulation that is independent of evoked release.
  • In mammalian hippocampal synapses and at the D. melanogaster neuromuscular junction, spontaneous release events activate specific postsynaptic signal transduction cascades that maintain synaptic efficacy or regulate structural plasticity and synaptic development.
  • Novel strategies that selectively target spontaneous release events are needed to address whether spontaneous release can signal independently during ongoing activity in intact neuronal circuits.
  • Introduction
Introduction
Our current insights into the mechanisms underlying synaptic transmission originate from experiments that were conducted in the 1950s by Bernard Katz and colleagues. A key aspect of these studies was the discovery of spontaneous neurotransmitter release events, which seemed to occur in discrete 'quantal' packets. This fundamental observation enabled the complex and seemingly intractable nature of action potential-evoked neurotransmission to be analyzed and understood on the basis of its unitary components. Although the original work solely relied on electrophysiological analysis, later studies that used electron microscopy provided visual validation of the hypothesis that neurotransmission occurs through fusion of discrete synaptic vesicles that contain neurotransmitters with the presynaptic plasma membrane.


Figure 3: Segregation of spontaneous and evoked neurotransmission.

Friday, April 22, 2016

HIV Patients Now Living Long Enough to Develop Alzheimer's

Findings upend previous beliefs about brain changes related to the AIDS-causing virus

The first case of Alzheimer's disease diagnosed in a person with HIV highlights the fact that long-time HIV survivors are starting to reach ages where their risk for Alzheimer's increases, researchers report.

The 71-year-old man was diagnosed after a medical scan revealed amyloid protein clumps in his brain. Until now, it was believed that HIV-related inflammation in the brain might prevent the formation of such clumps and thereby protect these people from Alzheimer's.

"This patient may be a sentinel case that disputes what we thought we knew about dementia in HIV-positive individuals," said study author Dr. R. Scott Turner. He is head of the Memory Disorders Program at Georgetown University Medical Center in Washington, D.C.

The case also suggests that some older people with HIV and dementia may be misdiagnosed with HIV-associated brain disorders, but actually have Alzheimer's disease. It's also possible that some older people with HIV have both HIV-associated brain disorders and Alzheimer's, according to Turner.

"Chronic HIV infection and amyloid deposition with aging may represent a 'double-hit' to the brain that results in progressive dementia," he said in a university news release.


Friday, April 15, 2016

Immune cells self-healing brain after stroke

After a stroke, there is inflammation in the damaged part of the brain. Until now, the inflammation has been seen as a negative consequence that needs to be abolished as soon as possible. But, as it turns out, there are also some positive sides to the inflammation, and it can actually help the brain to self-repair.

"This is in total contrast to our previous beliefs", says Professor Zaal Kokaia from Lund University in Sweden.

Zaal Kokaia, together with Professor of Neurology Olle Lindvall, runs a research group at the Lund Stem Cell Center that, in collaboration with colleagues at the Weizmann Institute in Israel, is responsible for these findings. Hopefully, these new data will lead to new ways of treating stroke in the future. The study was recently published in the Journal of Neuroscience.

When stroke occurs, the nerve cells in the damaged area of the brain die, causing an inflammation that attracts cells from the immune system. Among them you find monocytes—a type of white blood cells produced in the bone marrow.

Read more: Immune cells self-healing brain after stroke

False-colored scanning electron micrograph of a blood clot. There are many red blood cells and
a single white blood cell held together in a meshwork of fibrin (brown).
Source: Anne Weston, LRI, CRUK, Wellcome Images
Related Posts Plugin for WordPress, Blogger...

AddToAny