Biomedical Laboratory Science

ShareThis

Showing posts with label Research. Show all posts
Showing posts with label Research. Show all posts

Wednesday, May 4, 2016

Fasting no longer necessary before cholesterol test

For the first time, a team of international experts recommends that most people do not need to fast before having their cholesterol and triglyceride levels tested.

Fasting is a problem for many patients, they explain, and note the latest research shows that cholesterol and triglyceride levels are similar whether people fast or not.

The experts represent the European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) joint consensus initiative.

They refer to new research from Denmark, Canada, and the United States that included over 300,000 people and found it is not necessary to have an empty stomach to check cholesterol levels.

Apart from Denmark, all countries require that patients fast for at least 8 hours before checking their cholesterol and triglyceride levels - referred to as "lipid profile." In Denmark, non-fasting blood sampling has been in use since 2009.


Researchers say fasting before a cholesterol test is unnecessary.

We could be close enough to the stem cell revolution!

Stem cell therapy has been in use for many years, but with only limited reach. As such the oft bandied stem cell revolution has still yet to arrive. Steve Buckwell and Chris Coe explain why this is set to change and why now is the perfect time for its potential to be achieved. 

The stem cell revolution as it’s often referred to is now already in its third decade. But like the paper free office, is it just one of those envisaged futures that never seem to really happen? Embryonic stem cells were first isolated 18 years ago, but stem cell therapies have been slowed by high production costs, batch-to-batch variability and limited seed material. But we still believe the revolution will kick off some time in the second half of this decade. This is why.

Firstly the early ethical issues have, in many cases been overcome, with adult stem cells showing promise in the clinic but not requiring the embryo exploitation and destruction that made embryonic stem cell research so controversial in the years after 1998. Secondly, there is now substantial mid-stage clinical evidence that stem cells work in areas of unmet medical need, much of which has only become evident in the last five years.

There are various stem cell products in development that work allogeneically, meaning that the patient receives stem cells sourced from someone else’s body. As a general rule, allogeneic therapies are quite cost effective because they have the potential to be ‘off-the-shelf’, whereas autologous therapies (use of the patient’s own cells) can be considerably more expensive.



Source: labnews

Tuesday, May 3, 2016

Novel test can detect any virus

Scientists have designed a test that can detect not only any known virus type and subtype but also virus outbreaks.

A research team led by the Washington University School of Medicine in St Louis (WUSTL) condensed nearly 1 billion base pairs of viral DNA sequences to create a test that they call ViroCap.

“With this test, you don’t have to know what you’re looking for. It casts a broad net and can efficiently detect viruses that are present at very low levels. We think the test will be especially useful in situations where a diagnosis remains elusive after standard testing or in situations in which the cause of a disease outbreak is unknown,” said research associate Professor Gregory Storch.

To develop the test, the researchers targeted unique stretches of DNA or RNA from every known group of viruses that infects vertebrates – including 2 million unique stretches of genetic material. The stretches of material were used as probes which can pluck out viruses from a sample and find a genetic match. The matched viral material was then analyzed by high-throughput genetic sequencing.


New test can detect any virus that infects vertebrates
Source: labnews

Sunday, May 1, 2016

Human sperm created from mature skin cells for infertility solution

Scientists in Spain say they have created human sperm from skin cells, which could eventually lead to a treatment for infertility.

The researchers said they were working to find a solution for the roughly 15 per cent of couples worldwide who are unable to have children and whose only option is to use donated gametes (sperm or eggs).

"What to do when someone who wants to have a child lacks gametes?" asked Dr Carlos Simon, scientific director of the Valencian Infertility Institute, Spain's first medical institution fully dedicated to assisted reproduction.

"This is the problem we want to address: to be able to create gametes in people who do not have them."

The result of their research, which was carried out with Stanford University in the United States, was published on Tuesday in Scientific Reports, the online journal of Nature.


Infertile sperm cells were created by adding genes to skin cells

Organ regeneration with skin cells turning Into brain and heart cells

In a breakthrough study, researchers were able to chemically change skin cells to heart and brain cells.

When a person’s own body fails them, there are plenty of roadblocks to getting it running again. Adult hearts have a very limited ability to regenerate, so oftentimes the only way to help a person with a failing heart is to get them a new one. This is risky, though, since the patient’s body may reject even a perfectly matched organ. Scientists have been making strides in overcoming that problem by using a patient’s own stem cells to regenerate tissue, and researchers from the Gladstone Institutes have made a major breakthrough in the area — they successfully used a combination of chemicals to transform skin cells into heart and brain cells.

The feat is unprecedented, since all previous attempts to reprogram cells required scientists to add outside genes. Published in Science and Stem Cell, the research gives scientists a foundation for one day being able to regenerate lost or damaged cells with pharmaceuticals. The system is both more reliable and efficient than previous processes, and avoids medical concerns surrounding genetic engineering.

“This method brings us closer to being able to generate new cells at the site of injury in patients,” Dr. Sheng Ding, a Gladstone senior investigator, said in a press release. “Our hope is to one day treat diseases like heart failure or Parkinson’s disease with drugs that help the heart and brain regenerate damaged areas from their own existing tissue cells. This process is much closer to the natural regeneration that happens in animals like newts and salamanders, which has long fascinated us.”


Brain cells are hard to fake, but it may now be possible.
Source: Pixabay

Friday, April 29, 2016

Obesity, stress and even cellphone use can influence men's ability to conceive

Certain lifestyle factors are linked to higher rates of damage in the genetic material in men’s sperm. This could affect men’s ability to conceive as well as the genes they pass on to their children.

According to researchers, the damage may stem from factors such as obesity, stress and even cellphone use.

Semen analysis usually looks at the numbers and the condition of whole sperm. But the authors of a small study in Poland believe the degree of breakage, or fragmentation, in DNA strands in the sperm might be a better indicator of fertility. DNA carries the cell’s genetic information and hereditary characteristics.

Men with fragmentation have lower odds of conceiving naturally and through such procedures as in vitro fertilization, the scientists write in the International Journal of Impotence Research.

Researchers have noticed before that lifestyle factors can influence the level of sperm DNA fragmentation, said Ricardo P. Bertolla of Sao Paulo Federal University in Brazil, who was not part of the new study.


In a new study, older men and those with higher work stress had more fragmentation of the DNA in
their sperm, which might affect their ability to conceive as well as the genes they pass on to their children.

Thursday, April 14, 2016

DNA damage detected in patients after CT scanning.

Using new laboratory technology, scientists have shown that cellular damage is detectable in patients after CT scanning. In this study, researchers examined the effects on human cells of low-dose radiation from a wide range of cardiac and vascular CT scans. These imaging procedures are commonly used for a number of reasons, including management of patients suspected of having obstructive coronary artery disease, and for those with aortic stenosis, in preparation of transcatheter aortic valve replacement.

Using new laboratory technology, scientists have shown that cellular damage is detectable in patients after CT scanning, according to a new study led by researchers at the Stanford University School of Medicine.

"We now know that even exposure to small amounts of radiation from computed tomography scanning is associated with cellular damage," said Patricia Nguyen, MD, one of the lead authors of the study and an assistant professor of cardiovascular medicine at Stanford. "Whether or not this causes cancer or any negative effect to the patient is still not clear, but these results should encourage physicians toward adhering to dose reduction strategies."

Read more: DNA damage detected in patients after CT scanning.

Computed tomography (stock image). Along with the burgeoning use of advanced medical imaging
tests over the past decade have come rising public health concerns about possible links between low
dose radiation and cancer. The worry is that increased radiation exposure from such diagnostic
procedures as CT scans, which expose the body to low-dose X-ray beams, can damage DNA and
create mutations that spur cells to grow into tumors.
Source: Lilyana Vynogradova / Fotolia
Related Posts Plugin for WordPress, Blogger...

AddToAny