Biomedical Laboratory Science

ShareThis

Sunday, April 24, 2016

A Clinical Review on Vitamin D in Schizophrenia

Vitamin D (vitD) is known for its essential role in calcium homeostasis and bone health. VitD is made endogenously in the skin from UVB radiation from sunlight. VitD is now considered as a potent neurosteroid hormone, critical to brain development and normal brain function, and is known for its anti-inflammatory property affecting various aspects of human health. VitD ligand-receptor, a receptor that mediates much of vitD's biological actions, has been found throughout the body including the central nervous system. VitD deficiency is common in patients with severe mental illness such as schizophrenia. Schizophrenia is a debilitating chronic mental illness characterised by positive symptoms, such as hallucinations and delusions, and negative symptoms including flat affect and lack of motivation. Several environmental risk factors for schizophrenia, such as season of birth, latitude and migration, have been linked to vitD deficiency. Recent studies have suggested a potential role of vitD in the development of schizophrenia. For example, neonatal vitD status is associated with the risk of developing schizophrenia in later life obesity, insulin resistance, diabetes, hyperlipidaemia and cardiovascular disease, which are commonly seen in patients with schizophrenia. It has been well established that vitD deficiency is related to these metabolic problems. The biological mechanism is most likely related to vitD's action on the regulation of inflammatory and immunological processes, consequently affecting the manifestation of clinical symptoms and treatment response of schizophrenia. Potential benefits of vitD supplementation to improve schizophrenia symptoms as well as physical health in patients with schizophrenia should be further explored in future studies.

Introduction
Vitamin D (vitD), the 'sunshine' vitamin, is widely known for its essential role in calcium absorption and bone health. VitD is created in mammals after the epidermis comes into contact with UVB light. UVB radiation catalyses the conversion of 7-dehydrocholesterol to previtamin D3 in the skin, which is then quickly converted into vitamin D3 (cholecalciferol) by the body. 25-hydroxyvitamin D [25(OH)D], the main circulating form of vitD, is used by clinicians to measure vitD levels in the body. VitD is also obtained through dietary sources. Fatty fish, fungus and eggs naturally contain high levels of vitD. In many countries, cereal, milk and other everyday foods are fortified with vitD. VitD is also readily available as a dietary pill. However, since most individuals lack the necessary amount of exposure to UVB light and do not consume enough dietary vitD, vitD deficiency has become a global pandemic. While vitD has long been associated with bone health and related diseases, research in the past decade has uncovered its widespread effects on other aspects of the human body. Studies have identified links between vitD and a multitude of conditions including various cancers, autoimmune diseases, cardiovascular diseases, infectious diseases and mental disorders.

Studies have unveiled the presence of vitD, vitD receptors (VDR) and related enzymes (CYP 27B1, CYP 24A1) in various regions of the brain, leading researchers to establish vitD as a neuroactive/neurosteroid hormone critical to brain development and normal brain function. Furthermore, VitD's possible role in depression has led researchers to explore its potential benefits in other mental illnesses.

Schizophrenia is a severe and debilitating mental illness characterized by chronic positive (hallucinations, delusions) and negative symptoms (lack of motivation, speech issues).


DNA: Past to Present

GEN celebrates DNA Day with a video retelling of the still-unfolding DNA story, from early structural revelations, to innovative technologies, to life-altering applications.

GEN videos are informative, entertaining, and encompass all aspects of biotechnology.

Republished for Information & Education. 

Video link: DNA: Past to Present



Source: GenVideos

Reason behind your itching, teary eyes

Do your eyes itch after you’ve been near a cat? Do they puff up or run with tears when pollen is in the air? Allergies of the eye affect about 20% of Americans each year, and are on the rise. The same inhaled airborne allergens — pollens, animal dander, dust mite feces, and mold — that trigger allergic rhinitis (the familiar sneezing, runny nose, and congestion) can lead to allergic conjunctivitis (inflammation of the conjunctiva, the lining of the eye). It’s not surprising that people with allergic rhinitis often suffer from allergic conjunctivitis as well.

About 50% of allergic conjunctivitis sufferers, who tend to be young adults, have other allergic diseases or a family history of allergies. About 80% of eye allergies are seasonal; the rest are perennial (year-round). The symptoms are itchy and red eyes, tearing, edema (swelling) of the conjunctiva or eyelid, and a mucous discharge. Although it can be uncomfortable, you can rest assured that it is not a threat to your vision.
Diagnosing allergic conjunctivitis

Allergic conjunctivitis usually can be confirmed by your doctor based on your symptoms. Testing is not usually needed to diagnose the condition, but skin testing (the same kind that’s done for other allergic reactions) may help identify the allergens causing your symptoms.

If your symptoms don’t quickly respond to treatment, see your doctor in case you have a different condition. Dry eye, in particular, can mimic the symptoms of allergic conjunctivitis.



Source: Healthbeat

Scissor protein responsible for cancer spread

Aggressive cancer cells have been found to express higher amounts of a certain protein by scientists at the University of Bergen.

PITPNC1 controls a process where cancer cells secrete molecules which cut through proteins outside cell walls like scissors. This allows the cancerous cells to then enter the tissue and begin dividing and multiplying at a new site.

Dr Nils Halberg, a researcher at the University of Bergen said: “We discovered that the aggressive cancer cells that are spreading in colon, breast, and skin cancer contained a much higher portion of the protein PITPNC1, than the non-aggressive cancer cells.”

Using this knowledge, scientists can predict which cancer cells are becoming more aggressive and are likely to metastasize.



Source: labnews

Irregular periods could enhance risk of ovarian cancer

Young women with irregular menstrual periods may be at higher risk of developing—and dying from—ovarian cancer later in life, researchers found in a 50-year study of California women. The new research provides the first evidence linking abnormally long cycles or missed periods to higher ovarian cancer risk. It also challenges a longstanding hypothesis that such risk rises progressively with a woman’s total number of ovulations.

Having fewer ovulatory cycles is widely viewed as a protective factor against ovarian cancer. It’s the reason that hormonal birth control pills, pregnancy, and tubal ligations—which stop ovulation—have been thought to reduce risk for that disease. “This study is certainly curious, because it contradicts what we thought we knew about ovarian cancer and incessant ovulation,” says Mitchell Maiman, an OB/GYN at Staten Island University Hospital in New York.

Although ovarian cancer accounts for just 3% of all cancers in women, it’s the leading cause of gynecological cancer deaths. Less than half of all women diagnosed with ovarian cancer survive more than 5 years. Early symptoms, including abdominal discomfort and bloating, often go unnoticed or are misdiagnosed as irritable bowel syndrome. Because there are no routine screening tests and few markers to identify groups with increased risk of ovarian cancers, most cases are found when they are beyond the point of curing. Age is one risk factor—more than half of all ovarian cancers are diagnosed in women over the age of 63. Heredity is another—10% to 15% of women diagnosed with ovarian cancer have one or more known genetic risk factors.


Ovarian cancer is the fifth leading cause of cancer death among women

Saturday, April 23, 2016

Wondering why your belly fat won't disappear?

You work hard to lose weight, but the pooch won't budge. Our friends at Shape share some reasons as to why this is happening.

You can work out like a champ, eat virtuously, and get sound sleep but still stay thick around the middle. Blame some newly discovered triggers that undermine your slim-down efforts by making you pack on the belly flab. Take note, and trim down.

Living on a Busy Street
Regular exposure to traffic noise makes you 29 percent more likely to have a bigger waistline, according to findings in Occupational & Environmental Medicine. Other research found that such noise may spike your cortisol, a hormone associated with ab fat. Three suggestions for you: Drown out the noise by playing soothing music (studies revealed that such tunes lower cortisol levels), muffle the clamor with a background- noise machine, or pop in noise-canceling earbuds when you need to focus.

Your Fizzy Drink Habit
Ironically, people who sip the no-cal stuff in an effort to cut calories are actually more likely to gain belly fat. Diet soda drinkers who averaged about a can and a half a day packed 3.2 inches onto their waistlines over the course of nine and a half years, while those drinking fizzy drinks gained less than an inch, a recent study at the University of Texas Health Science Center found. One reason is that artificial sweeteners prevent the brain from registering satiety, thus increasing cravings for sweets, so you end up eating more, says study author Helen Hazuda.


Reasons You Might Not Be Able to Lose Belly Fat
Source: Shutterstock 

Genetic variants influencing kidney disease progression

A new study suggests that patients with focal segmental glomerulosclerosis - a type of kidney disease - may have a more advanced form of the condition at diagnosis if they possess certain genetic variants, with this association being strongest among African Americans.

The researchers, including Dr. Jeffery Kopp of the National Institutes of Health, publish their findings in the Journal of the American Society of Nephrology.

Focal segmental glomerulosclerosis (FSGS) is scarring in kidney tissue that affects more than 5,000 people in the US every year. Symptoms of the condition include foamy urine (caused by excess protein), weight gain, swelling (caused by excess body fluids) and poor appetite.

According to the researchers, FSGS is known to be more common among African Americans; compared with European Americans, African Americans are four times more likely to develop the condition.

Previous research has indicated that African Americans are at higher risk of chronic kidney disease (CKD) due to variants in apolipoprotein L1 (APOL1) - a gene that makes a protein that forms a part of high-density lipoprotein (HDL), referred to as "good" cholesterol. Around 5 million African Americans possess such variants.


The researchers found that 72% of African American participants with FSGS - a form of kidney disease
- had variants in the APOL1 gene.

Unlocking the secret to healthy aging!

A new study may bring us closer to unlocking the secret to healthy aging, after uncovering an array of genetic variants among healthy, elderly individuals that may protect against Alzheimer's and heart disease.

The findings come from the ongoing "Wellderly" study, in which researchers have so far applied whole genome sequencing to the DNA of more than 1,400 healthy individuals from the US aged 80-105 years.

Launched in 2007, the study aims to pinpoint certain genetic variants that may contribute to lifelong health.

"This study is exciting because it is the first large one using genetic sequencing to focus on health," says Michael Snyder, PhD, chairman of the Department of Genetics at Stanford University in California, who was not involved with the research.

"Most of the world's scientists are studying disease, but what we really want to understand is what keeps us healthy. That is what the Wellderly study is all about."


Researchers have uncovered some of the secrets of healthy aging with their new gene study.

Hubble Sees a Star 'Inflating' a Giant Bubble

For the 26th birthday of NASA’s Hubble Space Telescope, astronomers are highlighting a Hubble image of an enormous bubble being blown into space by a super-hot, massive star. The Hubble image of the Bubble Nebula, or NGC 7635, was chosen to mark the 26th anniversary of the launch of Hubble into Earth orbit by the STS-31 space shuttle crew on April 24, 1990 “As Hubble makes its 26th revolution around our home star, the sun, we celebrate the event with a spectacular image of a dynamic and exciting interaction of a young star with its environment.

The view of the Bubble Nebula, crafted from WFC-3 images, reminds us that Hubble gives us a front row seat to the awe inspiring universe we live in,” said John Grunsfeld, Hubble astronaut and associate administrator of NASA’s Science Mission Directorate at NASA Headquarters, in Washington, D.C.

The Bubble Nebula is seven light-years across—about one-and-a-half times the distance from our sun to its nearest stellar neighbor, Alpha Centauri, and resides 7,100 light-years from Earth in the constellation Cassiopeia. The seething star forming this nebula is 45 times more massive than our sun. Gas on the star gets so hot that it escapes away into space as a “stellar wind” moving at over four million miles per hour. This outflow sweeps up the cold, interstellar gas in front of it, forming the outer edge of the bubble much like a snowplow piles up snow in front of it as it moves forward.

As the surface of the bubble's shell expands outward, it slams into dense regions of cold gas on one side of the bubble. This asymmetry makes the star appear dramatically off-center from the bubble, with its location in the 10 o’clock position in the Hubble view. Dense pillars of cool hydrogen gas laced with dust appear at the upper left of the picture, and more “fingers” can be seen nearly face-on, behind the translucent bubble. The gases heated to varying temperatures emit different colors: oxygen is hot enough to emit blue light in the bubble near the star, while the cooler pillars are yellow from the combined light of hydrogen and nitrogen.

The pillars are similar to the iconic columns in the “Pillars of Creation” Eagle Nebula. As seen with the structures in the Eagle Nebula, the Bubble Nebula pillars are being illuminated by the strong ultraviolet radiation from the brilliant star inside the bubble. The Bubble Nebula was discovered in 1787 by William Herschel, a prominent British astronomer. It is being formed by an O star, BD +60º2522, an extremely bright, massive, and short-lived star that has lost most of its outer hydrogen and is now fusing helium into heavier elements. The star is about four million years old, and in 10 million to 20 million years, it will likely detonate as a supernova.

Hubble’s Wide Field Camera-3 imaged the nebula in visible light with unprecedented clarity in February 2016. The colors correspond to blue for oxygen, green for hydrogen, and red for nitrogen. This information will help astronomers understand the geometry and dynamics of this complex system. The Bubble Nebula is one of only a handful of astronomical objects that have been observed with several different instruments onboard Hubble. Hubble also imaged it with the Wide Field Planetary Camera (WFPC) in September 1992, and with Wide Field Planetary Camera-2 (WFPC2) in April 1999.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) 

Video link: A really cool video



Source: the Bubble Nebula and the Hubble telescope

Friday, April 22, 2016

Discovery of new state of water molecule!

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of water molecules confined in hexagonal ultra-small channels - 5 angstrom across - of the mineral beryl. An angstrom is 1/10-billionth of a meter, and individual atoms are typically about 1 angstrom in diameter.

The discovery, made possible with experiments at ORNL's Spallation Neutron Source and the Rutherford Appleton Laboratory in the United Kingdom, demonstrates features of water under ultra confinement in rocks, soil and cell walls, which scientists predict will be of interest across many disciplines.


ORNL researchers discovered that water in beryl displays some unique and unexpected characteristics.
Source: Jeff Scovil
Related Posts Plugin for WordPress, Blogger...

AddToAny