Biomedical Laboratory Science

ShareThis

Showing posts with label Automation. Show all posts
Showing posts with label Automation. Show all posts

Saturday, February 25, 2017

Before Automating The Blood Bank, Evaluate Compatibility With Existing Systems

Automation in the blood bank can be a turnaround time saver and staffing force multiplier. However, optimizing the testing workflow on the existing platforms should be the first order of business when considering new automation. There are companies that can be hired to do this, and they may present ways to optimize current analyzers with minor adjustments in the workflow process. Beginning with the end in mind, mapping the current workflow processes will provide a baseline for improving operations in any blood bank and laboratory.

Consider the laboratory structure. Is there a core laboratory concept with blood bank and microbiology located in the same workspace? Is it necessary to consider changes to the power, IT connections, and physical space in the planning process for new automation? Many laboratory structures limit the ability to share technologies and products, which creates operational gaps and challenges staffing models. Workflow process mapping will ensure that a lab leader has defined the many interconnected operations that impact the overall efficiency of a laboratory and point out key areas where automation may help make great strides in productivity. Placement of automation can allow for integration and cross training of the technical staff. A well-trained, cross-functional staff can be a great tool in generating efficiencies as well as reducing laboratorian burnout.



Evidence-based Quality Control

This article will discuss a new approach for automated hematology analyzers’ daily control limits. The discussion will cover some common issues around control of analyzers, suggest a new evidence-based approach to daily control limits, and conclude with a discussion of the benefits of this approach in the laboratory.

Some QC contexts

Too many false control rejections are the laboratory equivalent of crying wolf. Accustomed to false control rejections and not believing the problem is the analyzer, laboratorians often presume that the problem is the control and just repeat the control again. This practice often leads to multiple repetitions. It is frustrating, and difficult for operators to know when there actually is an analyzer issue.

The 1994 CAP Q-Probe study,1 completed to assess QC (Quality Control) practices and their impact on hospital laboratories, showed that 95 percent of labs repeated the same vial of control when a control run failed. In the overwhelming majority of cases, this was due to the belief that random error had occurred. (In control rules, the 13SD [Standard Deviation] means one control failure if one parameter falls outside of +/-3SD limits.) The study also found there was no benefit in using complex multi-rules or control processes for modern automated analyzers, due to the difficulty in understanding and following these complex processes. The recommendation from the study was to simplify control processes. Twenty-three years later, we have the same control issues.



Thursday, November 3, 2016

Standardization And Implementation of Lab Policies Ensure Hemostasis Sample Quality

How many of us remember the tilt-tube method for basic hemostasis testing? Fortunately, today’s instruments have automated most of these manual steps. However, until recently, assuring sample quality in the pre-analytical phase of testing had remained a manual process and had been difficult to implement and standardize.

Several questions must be considered when evaluating the integrity of a hemostasis sample: Is the sample tube under-filled? Is the sample hemolyzed, icteric, or lipemic? If so, do the levels of the interferent impact the testing results? Is there a clot in the sample?

All labs have policies on sample acceptance and rejection. Inappropriate rejection of acceptable samples—requiring redraw—directly impacts patient care, patient satisfaction, and cost. Failing to reject inappropriate samples can lead to the reporting of erroneous results, impacting the quality of patient care and associated cost. Let’s take a look at the most common pre-analytical quality issue culprits.



Monday, June 27, 2016

Automated Analyzers Add Efficiency to Laboratory Testing

Automation, broadly defined, is the mechanization of the steps in a procedure. Through mechanization of analyses there is increased reproducibility of results. Automation allows a reduction of human error and laboratory expenses, which is important in these economic times, as laboratories are challenged with budgetary constraints.

In 1957 the first completely automatic method for colorimetric analysis was reported,1 and then the analytical system used was brought to the market as the AutoAnalyzer by the company Technicon. Since then, continuous scientific and technological advances as well as developments in robotics and information technology have led to the introduction of the wide range of automated analyzers currently in the market, which can be applied to different working laboratory environments. Though automation reduces the hands-on intervention and the time needed to set up, run, and analyze results, human intervention is still required for loading/unloading, operation, and instrument maintenance, as well as for the interpretation of results.




Source: RocheDiagnosticsUSA

Saturday, June 18, 2016

Biomedical Laboratory Automation

Improve safety and efficiency in various types of clinical laboratories with Thermo Scientific™ TCAutomation™ Laboratory Automation Solutions. This expandable and scalable, fully-featured laboratory automation solution allows labor-intensive tasks in pre- and post-analytical phases of sample management to be automated in different combinations. Depending on the floor plan and efiiciency requirements, the TCAutomation™ systems can be expanded step-by-step.

TCAutomation™ systems throughput can range from 250 up to 1000 tubes per hour. Because solutions are modular, they are easy to expand. Automating can be started from a certain function and built up towards total laboratory automation. Samples are transported in the system within dual-lane conveyors in a multitube carrier which accommodates several tube sizes. The carrier includes an embedded microchip, based on RFID technology, making sample identification fast and reliable, and enabling excellent real-time sample tracking possibilities.



Thursday, June 16, 2016

Lab Automation: Renewed Vigor Under Pressure

Over the years, automation in clinical labs has made sizable gains toward improving efficiency and productivity, and delivering timely and accurate results to improve patient outcomes. But automating the many processes used in microbiology departments has been laboratories’ “last frontier,” according to Brad Banks, worldwide marketing manager for lab automation at BD Diagnostics–Diagnostic Systems, Sparks, Md.

Because of the nation’s aging population, the volume of assays performed by US labs is continuing to increase. Yet, at the same time, the number of available techs is decreasing, says Nilam Patel, senior product manager for automation solutions at Sysmex America Inc, Lincolnshire, Ill. Coupled with an increased emphasis on quality and patient outcome initiatives, these trends are leading clinical laboratories to seek automation that provides quality clinical information, maximizes operational efficiency, and minimizes “sample touch points.”


Automating the microbiology laboratory is the last frontier
Source: clpmag

Wednesday, June 15, 2016

Proper QC of Hematology Critical Values

The reporting of critical values—laboratory results that indicate a possible life-threatening situation for a patient—requires rapid clinical intervention in order to avert significant patient morbidity and mortality. Given the imperative of clear, accurate, and expeditious communication of critical value results from the laboratory to clinicians, one method of ensuring prompt handling is to create a protocol that optimizes workflow by eliminating waste and placing checks and balances throughout the process.

As with most vital aspects of laboratory work, managing hematology critical values depends largely on the acumen and aptitude of staff. Thus, an instituted protocol will only be successful if staff technologists are properly trained, gain sufficient knowledge of all involved systems and automation, and are equipped with tools to recognize the effectiveness of checks and balances.



Source: medlabmag

Thursday, April 28, 2016

Molecular Diagnostics in the Microbiology Laboratory

A look at some of the newest generation ‘load and go’ molecular microbiology analyzers.

For decades, pathogens have been isolated and grown in blood cultures, and detected using microscopes, serology and biochemical techniques. However the last few years have seen a revolution in modern microbiology.

The above tests still form the core work of most routine microbiology labs, but modern analytical techniques such as molecular diagnostics and mass spectrometry are increasingly being incorporated, to varying degrees, in laboratories around the world.

Molecular diagnostics refers to the analysis of nucleic acid from DNA or RNA. In the clinical microbiology lab, scientists are looking for the nucleic acid of microorganisms to confirm or exclude a diagnosis.

The molecular diagnostic work undertaken in the lab can vary from a simple, manual monoplex polymerase chain reaction (PCR) based test to complex automated, multiplex testing (testing for multiple pathogens simultaneously). Some of the newest generation ‘load and go’ molecular analyzers are detailed below.

VERIS Mdx Molecular Diagnostics System
The DxN VERIS combines sample prep and sample analysis steps into a single workflow. The automation of DNA extraction, purification, assay set-up and analysis saves the user time and also prevents user error and the risk of contamination. Using real-time PCR, the system is designed for multiplex assays and uses magnetic particle separation for nucleic acid extraction and purification. The initial test menu includes Cytomegalovirus, Hepatitis B, Hepatitis C and HIV-1 ......


Microbiology has traditionally involved use of blood cultures, however molecular methods are
increasingly employed in modern laboratories;
Beckman Coulter's VERIS Mdx Molecular Diagnostics System
Source: SelectScience

Friday, April 8, 2016

Automatiion in the clinical microbiology laboratory

In spite of some exceptions, the clinical microbiology lab has been a late starter as far as automation is concerned. It has also traditionally been viewed as ‘low tech’, especially when compared to its cousins in clinical chemistry or pathology. A variety of factors, however, have been converging to reverse such a situation.

Automation hampered by process complexity
One of the most important barriers to the automation of a clinical microbiology lab is process complexity. Unlike hematology or chemistry labs, which have little diversity in specimens and generally use standard collection tubes, microbiology laboratories need to work with a vast range of specimen types in a multitude of transport containers. The complex nature of specimen processing and culturing and the ensuing lack of standardization have been major deterrents to automation.

Nevertheless, growth in the presence of automated technologies in clinical microbiology labs is now expected to accelerate as a result of several factors, above all rising demand. This requires agility and high responsiveness, making automation indispensable.

Aging populations drive demand
Aging populations with more-complex diseases and conditions require a growing number of tests - for example, to monitor implants and prosthetic devices for infections. The elderly also need greater care in medicating, since they are more prone to adverse drug events.

In the year 2000, an article by Dr. Thomas T. Yoshikawa of the King-Drew Medical Center in Los Angeles noted that though “the major focus in infectious diseases for the past decade has been on young adults”, in the future “the vast majority of serious infectious diseases will be seen in the elderly population.”

Read more: Automatiion in the clinical microbiology laboratory


Source: captodayonline
Related Posts Plugin for WordPress, Blogger...

AddToAny