Biomedical Laboratory Science

ShareThis

Showing posts with label Insulin Resistance. Show all posts
Showing posts with label Insulin Resistance. Show all posts

Friday, July 1, 2016

How Fat Becomes Lethal, Even Without Weight Gain

Recent findings have the potential to help scientists better understand a growing class of often fatal metabolic diseases.

Sugar in the form of blood glucose provides essential energy for cells. When its usual dietary source – carbohydrates – is scarce, the body goes into starvation mode and the liver can produce glucose with the aid of fat.

But new research from Johns Hopkins adds to evidence that other tissues can step in to make glucose, too. The research also found that the liver’s role in breaking down fats is vital to protect the organ from a lethal onslaught of fat.



Wednesday, June 22, 2016

The Role of Diet and Exercise in the Transgenerational Epigenetic Landscape of T2DM

Epigenetic changes are caused by biochemical regulators of gene expression that can be transferred across generations or through cell division. Epigenetic modifications can arise from a variety of environmental exposures including undernutrition, obesity, physical activity, stress and toxins. Transient epigenetic changes across the entire genome can influence metabolic outcomes and might or might not be heritable. These modifications direct and maintain the cell-type specific gene expression state. Transient epigenetic changes can be driven by DNA methylation and histone modification in response to environmental stressors. A detailed understanding of the epigenetic signatures of insulin resistance and the adaptive response to exercise might identify new therapeutic targets that can be further developed to improve insulin sensitivity and prevent obesity. This Review focuses on the current understanding of mechanisms by which lifestyle factors affect the epigenetic landscape in type 2 diabetes mellitus and obesity. Evidence from the past few years about the potential mechanisms by which diet and exercise affect the epigenome over several generations is discussed.

Key points
  • Epigenetic processes have been implicated in the pathogenesis of type 2 diabetes mellitus
  • Diet and exercise might affect the epigenome over several generations
  • Epigenetic changes can be driven by DNA methylation and histone modification in response to environmental stressors
  • Regulation of gene expression by DNA methylation and histone modification occurs by a mechanism that impairs the access of transcriptional machinery to the promoters
  • Studying the epigenetic signatures of insulin resistance and the adaptive response to exercise might provide insight into gene–environment networks that control glucose and energy homeostasis.

Figure 2: Putative effects of exercise and obesity on the predisposition to metabolic diseases.
Related Posts Plugin for WordPress, Blogger...

AddToAny