Cardiac troponins (cTn) have been available for nearly 2 decades in clinical laboratories and are now considered the gold standard for biochemical detection of myocardial infarction (MI). Furthermore, multiple organizations have endorsed the biomarkers’ use in both clinical and analytical guidelines. Today, the universal definition of MI includes the typical rise and/or fall of cTn with at least one value above the 99th percentile of a healthy reference population accompanied by at least one of the following clinical factors: presence of ischemic symptoms; electrocardiographic changes; or imaging evidence of loss of viable myocardium or a new wall motion abnormality.
However, a growing body of evidence now suggests that very low cTn values are clinically important. Investigators have found that patients who have cTn elevations considered normal, but near the 99th percentile, have worse prognoses and require more aggressive clinical management. These findings have prompted the search for newer techniques to enhance precision and enable measurements of cTn at or even below the 99th percentile cutoff.
Recently, researchers and commercial manufacturers have developed several high-sensitivity assays for cardiac troponin (hs-cTn) that are expected to be available soon for routine clinical use in the U.S. Understanding their analytical and clinical performance will be extremely important because under the current MI definition, a significant proportion of the general population would have evidence of myocardial injury. In this article, we will review the basic analytical and clinical characteristics of hs-cTn assays that are important for laboratory professionals to understand and describe how best to help clinicians employ these powerful assays.
However, a growing body of evidence now suggests that very low cTn values are clinically important. Investigators have found that patients who have cTn elevations considered normal, but near the 99th percentile, have worse prognoses and require more aggressive clinical management. These findings have prompted the search for newer techniques to enhance precision and enable measurements of cTn at or even below the 99th percentile cutoff.
Recently, researchers and commercial manufacturers have developed several high-sensitivity assays for cardiac troponin (hs-cTn) that are expected to be available soon for routine clinical use in the U.S. Understanding their analytical and clinical performance will be extremely important because under the current MI definition, a significant proportion of the general population would have evidence of myocardial injury. In this article, we will review the basic analytical and clinical characteristics of hs-cTn assays that are important for laboratory professionals to understand and describe how best to help clinicians employ these powerful assays.
Source: aacc, shutterstock
No comments:
Post a Comment