Researchers create novel genetic circuits that give insight into, and are inspired by, nature.
Every two hours in Matthew Bennett’s Rice University lab, cyan and yellow lights flashed in synchronization. Bennett and his team had engineered 12 components to generate the coordinated oscillations. This circuit wasn’t electronic, however; it was biological. Two populations of E. coli, each carrying a synthetic gene circuit, cycled in synchronous pulses every 14 hours.
Bennett’s work, published last year in Science, is a key application of modern synthetic biology: taking biological components and linking them together to form novel functional circuits. Instead of a program coded in Java and executed by a computer’s working memory, commands were written in DNA and carried out by the microbes’ cellular machinery. LEDs were replaced with fluorescent proteins, and molecular signaling cascades served as the system’s wires.
Read more: Synthetic Biology Comes into Its Own
© ISTOCK.COM/FATIDO/FEORIS |
Source: theScientist
No comments:
Post a Comment