Biomedical Laboratory Science

ShareThis

Showing posts with label Structure. Show all posts
Showing posts with label Structure. Show all posts

Saturday, February 10, 2018

VITAMINS: The Micronutrients in Our Body !



The essential macronutrients are water, proteins, carbohydrates, fats, vitamins, and minerals.

In developed countries, vitamin deficiencies result mainly from poverty, food fads, drugs, or alcoholism. Vitamin toxicity (hypervitaminosis) usually results from taking megadoses of Vitamin A, D, B6, or niacin. In general, excess amounts of water-soluble vitamins are excreted via the Kidneys.


Vitamins may be Fat soluble (vitamins A, D, E, and K) or Water soluble (B vitamins and vitamin C). The B vitamins include biotin, Folate, niacin, pantothenic acid, riboflavin, thiamine, pyridoxine, and B12. After digestion and absorption, which circulatory system carries fat and fat-soluble vitamins?
“Vitamins are the essential nutrients that our body needs in small amounts. More specifically, an organic compound is defined as a vitamin when an organism requires it, but not synthesized by that organism in the required amounts (or at all). There are thirteen recognized vitamins.”
Vegans may develop vitamin B12 deficiency unless they consume yeast extracts or Asian style fermented foods. Strictly, vegetarian diets also tend to be low in calcium, iron, and zinc.




Wednesday, September 20, 2017

DNA: Past to Present 2017

National DNA Day is not only a celebration of the structure and sequence of the double-helix, but also the tireless commitment of researchers to understand the complexities of our genetic blueprint. As we revel in all things DNA, the GEN editorial staff has assembled a brief video timeline highlighting significant dates in DNA discovery.






Saturday, July 16, 2016

MCQ 10. The glycoprotein hormones are a family of cystine rich proteins


MCQ 10. The glycoprotein hormones are a family of cystine rich proteins consisting of an alpha and beta subunit, and are characterized by their heavy glycosylation.

Which of the following is a glycoprotein hormone?
a. Cortisol  
b. Growth hormone releasing hormone (GHRG)
c. Thyrotropin releasing hormone (TRH) 
d. Thyrotropin (TSH)
e. Oxytocin

Answers

Sunday, April 10, 2016

Hemoglobin Review

Much of our understanding of human physiology, and of many aspects of pathology, has its antecedents in laboratory and clinical studies of hemoglobin. Over the last century, knowledge of the genetics, functions, and diseases of the hemoglobin proteins has been refined to the molecular level by analyses of their crystallographic structures and by cloning and sequencing of their genes and surrounding DNA. In the last few decades, research has opened up new paradigms for hemoglobin related to processes such as its role in the transport of nitric oxide and the complex developmental control of the α-like and β-like globin gene clusters. It is noteworthy that this recent work has had implications for understanding and treating the prevalent diseases of hemoglobin, especially the use of hydroxyurea to elevate fetal hemoglobin in sickle cell disease. It is likely that current research will also have significant clinical implications, as well as lessons for other aspects of molecular medicine, the origin of which can be largely traced to this research tradition.

Introduction
During the past 60 years, the study of human hemoglobin, probably more than any other molecule, has allowed the birth and maturation of molecular medicine. Laboratory research, using physical, chemical, physiological, and genetic methods, has greatly contributed to, but also built upon, clinical research devoted to studying patients with a large variety of hemoglobin disorders.

Read more: Hemoglobin Review


Source: bloodjournal
Related Posts Plugin for WordPress, Blogger...

AddToAny