Biomedical Laboratory Science

ShareThis

Thursday, April 7, 2016

Brain signalling regulation by nerve terminal nanofilaments

State-of-the-art electron microscopy reveals the large-scale organization of the proteins that regulate neurotransmitter release

This spectacular image – which took the best part of a year to create – shows the fine structure of a nerve terminal at high resolution, revealing, for the very first time, an intricate network of fine filaments that controls the movements of synaptic vesicles.

The brain is soft and wet, with the consistency of a lump of jelly. Yet, it is the most complex and highly organized structure that we know of, containing hundreds of billions of neurons and glial cells, and something on the order of one quadrillion synaptic connections, all of which are arranged in a very specific manner.

This high degree of specificity extends down to the deepest levels of brain organization. Just beneath the membrane at the nerve terminal, synaptic vesicles store neurotransmitter molecules, and await the arrival of a nervous impulse, whereupon they fuse with the membrane and release their contents into the synaptic cleft, the miniscule gap at the junction between nerve cells, and diffuse across it to bind to receptor protein molecules embedded at the surface of the partner cell.

Read more: Brain signalling regulation by nerve terminal nanofilaments

3D reconstruction showing three types of nanofilaments that connect to synaptic
vesicles in the nerve terminals of excitatory synapses in the rat hippocampus.
Source: Cole, A. A., et al., Journal of Neuroscience (2016)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

AddToAny