Biomedical Laboratory Science

ShareThis

Monday, May 2, 2016

Tips to diabetes for drinking alcohol

Enjoying a glass of wine, fruity margarita, or frosty pint of beer requires a little forethought if you have diabetes. Before you indulge, make sure you have a tasty appetizer or healthy salad to go along with your drink. And talk to your doctor about drinking alcohol. The answer to whether you can or should not will depend on your specific circumstances.

How Does Alcohol Affect Blood Sugar?

The way alcohol affects your blood sugar comes down to whether you’ve eaten, and how much and how often you drink. A standard drink contains 0.6 fluid ounces of alcohol. This means that a 12 ounce beer (about 5% alcohol) is equivalent to a 5 ounce glass of your average table wine (about 12% alcohol) or a shot of hard liquor such as vodka. Here’s the scoop on how much and how often:
  • When you have an occasional drink with food, alcohol generally has little effect on your blood sugar. This is the safest way to enjoy alcohol.
  • When you have an occasional drink without any food, alcohol can cause your blood sugar to fall to dangerously low levels. You should never drink alcohol on an empty stomach.
  • If you are a habitual drinker (3 to 4 drinks a day), alcohol increases your blood sugar no matter what you eat. If this describes you, consider talking to your doctor about ways to cut back or stop your alcohol use.


Source: diabeteszone

'Millions will die' from antimicrobial resistance unless we act now

From helping humans live longer and hacking our performance, to repairing the body and understanding the brain, WIRED Health will hear from the innovators transforming this critical sector.

Ten million people around the world will die each year by 2050 if more is not done to tackle the growing threat of antimicrobial resistance, Jim O'Neill, commercial secretary to the treasury, has said.

Speaking at WIRED Health, O'Neill said the rise in resistance needs to be "embraced by policy makers around the world".

If it isn't then the number of people dying from antimicrobial resistance (AMR) will increase dramatically.


Staphylococcus Aureus

Sunday, May 1, 2016

Lab-grown sperm makes healthy offspring

Sperm have been made in the laboratory and used to father healthy baby mice in a pioneering move that could lead to infertility treatments.

The Chinese research took a stem cell, converted it into primitive sperm and fertilised an egg to produce healthy pups.

The study, in the Journal Cell Stem Cell, showed they were all healthy and grew up to have offspring of their own.

Experts said it was a step towards human therapies.

It could ultimately help boys whose fertility is damaged by cancer treatment, infections such as mumps or those with defects that leave them unable to produce sperm.

Sperm factory

Making sperm in the testes is one of the longest and most complicated processes in the body - taking more than a month from start to finish in most mammals.



Source: bbc

Scientists are growing billions of blood cells in the lab

From helping humans live longer and hacking our performance, to repairing the body and understanding the brain, WIRED Health will hear from the innovators transforming this critical sector. Read all of our WIRED Health coverage here.

Jo Mountford is making billions of red blood cells in a laboratory in Glasgow. And now she wants to scale-up production. Big time.

Mountford, from the Institute of Cardiovascular and Medical Sciences at the University of Glasgow, started trying to create blood in the lab in 2007 and is now able to create it on demand.

In 2008, her team produced 100,000 red blood cells; by 2014 output had reached ten billion cells for the year. The ten billion cells were stored in 88 flasks and made up 8.8 litres of blood.

The team – funded by the Wellcome Trust and incorporating universities and organisations from around the UK – is now able to produce the cells in 30-31 days. "We can choose what blood group we make," Mountford told the audience at WIRED Health.


The NHS Blood and Transplant facility in Bristol, where donated blood is screened. A British team
called Novosang wants to render this process obsolete
Source: Greg White

Human sperm created from mature skin cells for infertility solution

Scientists in Spain say they have created human sperm from skin cells, which could eventually lead to a treatment for infertility.

The researchers said they were working to find a solution for the roughly 15 per cent of couples worldwide who are unable to have children and whose only option is to use donated gametes (sperm or eggs).

"What to do when someone who wants to have a child lacks gametes?" asked Dr Carlos Simon, scientific director of the Valencian Infertility Institute, Spain's first medical institution fully dedicated to assisted reproduction.

"This is the problem we want to address: to be able to create gametes in people who do not have them."

The result of their research, which was carried out with Stanford University in the United States, was published on Tuesday in Scientific Reports, the online journal of Nature.


Infertile sperm cells were created by adding genes to skin cells

Organ regeneration with skin cells turning Into brain and heart cells

In a breakthrough study, researchers were able to chemically change skin cells to heart and brain cells.

When a person’s own body fails them, there are plenty of roadblocks to getting it running again. Adult hearts have a very limited ability to regenerate, so oftentimes the only way to help a person with a failing heart is to get them a new one. This is risky, though, since the patient’s body may reject even a perfectly matched organ. Scientists have been making strides in overcoming that problem by using a patient’s own stem cells to regenerate tissue, and researchers from the Gladstone Institutes have made a major breakthrough in the area — they successfully used a combination of chemicals to transform skin cells into heart and brain cells.

The feat is unprecedented, since all previous attempts to reprogram cells required scientists to add outside genes. Published in Science and Stem Cell, the research gives scientists a foundation for one day being able to regenerate lost or damaged cells with pharmaceuticals. The system is both more reliable and efficient than previous processes, and avoids medical concerns surrounding genetic engineering.

“This method brings us closer to being able to generate new cells at the site of injury in patients,” Dr. Sheng Ding, a Gladstone senior investigator, said in a press release. “Our hope is to one day treat diseases like heart failure or Parkinson’s disease with drugs that help the heart and brain regenerate damaged areas from their own existing tissue cells. This process is much closer to the natural regeneration that happens in animals like newts and salamanders, which has long fascinated us.”


Brain cells are hard to fake, but it may now be possible.
Source: Pixabay

Disorders that can affect the placenta during pregnancy

The placenta and its health are vital to the health of a woman's pregnancy and fetal development. This organ provides oxygen, nutrients, and filters fetal waste during pregnancy.

It also plays an important role in hormone production and protects the fetus from bacteria and infections.

The blood-rich placenta is joined to the uterine wall and connects to the baby by way of the umbilical cord.

Most often the placenta attaches itself to the top or side of the uterine wall. At times, however, it may grow or attach to the uterus in a way that can cause health problems.


The risk of placental disorders is affected by ethnicity, lifestyle and medical history.

Saturday, April 30, 2016

Female hormones may decrease risk of kidney failure in women than men

Female hormones may play a role in women's decreased risk of developing kidney failure relative to men, according to a study appearing in an upcoming issue of the Journal of the American Society of Nephrology (JASN). The findings may be helpful for future attempts at safeguarding women's and men's kidney health in sex-specific ways.

Sex differences between men and women affect most, if not all, organ systems in the body, but there is a significant gap in knowledge of female physiology aside from organ functions involved in reproduction. Regarding the kidneys, while international registries show that fewer women than men develop kidney failure, the underlying causes are unknown.

To investigate, a team led by Judith Lechner, PhD and Thomas Seppi, PhD (Medical University of Innsbruck, in Austria) examined whether hormone changes due to the female menstrual cycle might affect the health of kidney cells. For this purpose, urinary samples from healthy women of reproductive age were collected daily and analyzed for menstrual cycle-associated changes of different proteins.


Source: umm.edu

Friday, April 29, 2016

Esophageal Cancer

Overview

Esophageal cancer starts at the inside lining of the esophagus and spreads outward through the other layers as it grows. The two most common forms of esophageal cancer are named for the type of cells that become malignant:
  • Squamous cell carcinoma: Cancer that forms in squamous cells, the thin, flat cells lining the esophagus. This cancer is most often found in the upper and middle part of the esophagus, but can occur anywhere along the esophagus. This is also called epidermoid carcinoma.
  • Adenocarcinoma: Cancer that begins in glandular (secretory) cells. Glandular cells in the lining of the esophagus produce and release fluids such as mucus. Adenocarcinomas usually form in the lower part of the esophagus, near the stomach.
The National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) Program estimates that some 16,980 people in the United States will be diagnosed with esophageal cancer and 15,590 will die of the disease in 2015. The average five year survival rate is just 17.9 percent.

Smoking, heavy alcohol consumption, and Barrett esophagus can increase the risk of developing esophageal cancer. Other risk factors include older age, being male, and being African-American.

Read more: Esophageal Cancer

The esophagus and stomach are part of the upper gastrointestinal (digestive) system.
Video link: Esophageal Cancer



Islet transplantation, blood sugar and type 1 diabetes

New clinical trial results show that transplantation of pancreatic islets--cell clusters that contain insulin-producing cells--prevents severe, potentially life-threatening drops in blood sugar in people with type 1 diabetes. Researchers found that the treatment was effective for people who experienced episodes of severe hypoglycemia--low blood sugar levels that can lead to seizures, loss of consciousness and death--despite receiving expert care.

The Phase 3 trial was funded by the National Institute of Allergy and Infectious Diseases (NIAID) and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), both part of the National Institutes of Health, and was conducted by the NIH-sponsored Clinical Islet Transplantation (CIT) Consortium. The investigators designed the study in consultation with the U.S. Food and Drug Administration to enable potential future licensure of the manufacture of purified human pancreatic islets. The results appear online today in Diabetes Care.

"The findings suggest that for people who continue to have life-altering severe hypoglycemia despite optimal medical management, islet transplantation offers a potentially lifesaving treatment that in the majority of cases eliminates severe hypoglycemic events while conferring excellent control of blood sugar," said NIAID Director Anthony S. Fauci, M.D.


Transplantation of pancreatic islets--cell clusters that contain insulin-producing cells--prevents severe,
potentially life-threatening drops in blood sugar in people with type 1 diabetes, according to new research
Related Posts Plugin for WordPress, Blogger...

AddToAny